Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 25.
Article in English | MEDLINE | ID: covidwho-2314136

ABSTRACT

The use of diverse Ag-based nanoparticulated forms has shown promising results in controlling viral propagation. In this study, a commercial nanomaterial consisting of ceramic-coated silver nanoparticles (AgNPs) was incorporated into thermoplastic polyurethane (TPU) plates using an industrial protocol, and the surface composition, ion-release dynamics and viricidal properties were studied. The surface characterization by FESEM-EDX revealed that the molar composition of the ceramic material was 5.5 P:3.3 Mg:Al and facilitated the identification of the embedded AgNPs (54.4 ± 24.9 nm). As determined by ICPMS, the release rates from the AgNP-TPU into aqueous solvents were 4 ppm/h for Ag and Al, and 28.4 ppm/h for Mg ions. Regarding the biological assays, the AgNP-TPU material did not induce significant cytotoxicity in the cell lines employed. Its viricidal activity was characterized, based on ISO 21702:2019, using the Spring viraemia of carp virus (SVCV), and then tested against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The results demonstrated that AgNP-TPU materials exhibited significant (75%) and direct antiviral activity against SVCV virions in a time- and temperature-dependent manner. Similar inhibition levels were found against SARS-CoV-2. These findings show the potential of AgNP-TPU-based materials as a supporting strategy to control viral spread.

2.
Int J Environ Res Public Health ; 19(21)2022 Oct 23.
Article in English | MEDLINE | ID: covidwho-2081863

ABSTRACT

In the context of ongoing and future pandemics, non-pharmaceutical interventions are critical in reducing viral infections and the emergence of new antigenic variants while the population reaches immunity to limit viral transmission. This study provides information on efficient and fast methods of disinfecting surfaces contaminated with different human coronaviruses (CoVs) in healthcare settings. The ability to disinfect three different human coronaviruses (HCoV-229E, MERS-CoV, and SARS-CoV-2) on dried surfaces with light was determined for a fully characterized pulsed-xenon ultraviolet (PX-UV) source. Thereafter, the effectiveness of this treatment to inactivate SARS-CoV-2 was compared to that of conventional low-pressure mercury UVC lamps by using equivalent irradiances of UVC wavelengths. Under the experimental conditions of this research, PX-UV light completely inactivated the CoVs tested on solid surfaces since the infectivity of the three CoVs was reduced up to 4 orders of magnitude by PX-UV irradiation, with a cumulated dose of as much as 21.162 mJ/cm2 when considering all UV wavelengths (5.402 mJ/cm2 of just UVC light). Furthermore, continuous irradiation with UVC light was less efficient in inactivating SARS-CoV-2 than treatment with PX-UV light. Therefore, PX-UV light postulates as a promising decontamination measure to tackle the propagation of future outbreaks of CoVs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Ultraviolet Rays , Xenon , Pandemics/prevention & control , Disinfection/methods
3.
Cells ; 9(7)2020 07 05.
Article in English | MEDLINE | ID: covidwho-636152

ABSTRACT

The SARS-CoV-2 pandemic necessitates a review of the molecular mechanisms underlying cellular infection by coronaviruses, in order to identify potential therapeutic targets against the associated new disease (COVID-19). Previous studies on its counterparts prove a complex and concomitant interaction between coronaviruses and autophagy. The precise manipulation of this pathway allows these viruses to exploit the autophagy molecular machinery while avoiding its protective apoptotic drift and cellular innate immune responses. In turn, the maneuverability margins of such hijacking appear to be so narrow that the modulation of the autophagy, regardless of whether using inducers or inhibitors (many of which are FDA-approved for the treatment of other diseases), is usually detrimental to viral replication, including SARS-CoV-2. Recent discoveries indicate that these interactions stretch into the still poorly explored noncanonical autophagy pathway, which might play a substantial role in coronavirus replication. Still, some potential therapeutic targets within this pathway, such as RAB9 and its interacting proteins, look promising considering current knowledge. Thus, the combinatory treatment of COVID-19 with drugs affecting both canonical and noncanonical autophagy pathways may be a turning point in the fight against this and other viral infections, which may also imply beneficial prospects of long-term protection.


Subject(s)
Autophagy , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Apoptosis , Autophagy/drug effects , Autophagy-Related Proteins/antagonists & inhibitors , Autophagy-Related Proteins/metabolism , Betacoronavirus/classification , Betacoronavirus/physiology , COVID-19 , Capsid Proteins/metabolism , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Humans , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL